
Tutorials on DAMASK
Crystal Plasticity Software

Based on lecture notes of Philip Eisenlohr (MSU)
Prepared by Praveen Kumar (IISc)

Tutorial 1: Uniaxial tension type loading on an isotropic material (no specific slip system)
Tutorial 2: Uniaxial tension type loading on a crystalline material (specific slip systems, etc.)
Tutorial 3: Uniaxial compression type loading on a 2-phase alloy

“Long list” items in this directory

Generate 40 points on 64 x 64 x 1 (i.e. 2-
D) grid (>) write in a file

named
40grains.seeds

Create geometry Using Voronoi
Tessellation scheme on 64 x 64 x 1 grid

having 40 grains

Read the data from
this file

Number of grains = number of independent points (i.e., 40)

Total number of grids (= 64 x 64) – this becomes discretised
points. Thus average number of points in one grain = 64 x 64 /40
=102.4

Size of 2-D geometry (note a small thickness – which is
default)

Origin is just (0,0,0)
New file containing
geometry

Tutorial 1: Uniaxial tension type loading on an isotropic material (no specific slip system)

Generates a file (.vtu) which can be opened using “Paraview” to
visualize the locations of 40 points

Do not worry about it!

Generates a file (.vtr) which can be opened using Paraview to
visualize the 40 grains and how are they formed

A grain is a microstructure here
No homogenization as each grid lies within a grain

Transfer the files of interest to your machine for visualization using
“paraview” or anything else

Using SCP program (such as WinSCP) connect to the
computer running the program (i.e., 10.194.30.25)

using the same login credentials

Opening .vtu file to
visualize the positions of
40 points (pivot points for
generating 40 grains)

Locations of 40 points (positions are random – thus no two
geometry created using the same commands will be same)

Open: Paraview Software

I

II

Opening .vtr file to
visualize the geometry
with 40 grains

Outline
III

I
Surface

II
Surface

Solid
Color

Microstructure

III – 64 x 64
nodes

Solid color
Wireframe

Generates a configuration file consisting of details of
materials geometry, such as ……….
More on Voronoi Tessellation at:

https://en.wikipedia.org/wiki/Voronoi_diagram

Copy (cp) the above file in a new file – “material.config” which
will be used by DAMASK program

Name of this file is first half of .seeds file followed by
_material.config (which cannot be used by DAMASK program)

Reading “material.config” file (command “less”;
enter or down-arrow to read below; “q” to exit

First <property>

This crystallite has only one
phase, only one but unique

texture and this type of
crystallite fills the entire region

dedicated for this grain

 The same thing for remaining
40 grains!

Second <property>

Euler angles in ?? format

First [Info for your reference –
not used by program]

Editing “material.config” file to add
“homogenization” and “phase” information

using “nano” editing tool

Editing tools
for “nano”

Saving a file (in “nano”):
1. Ctrl + X to escape
2. Then “Y” to save the changes
3. “Enter” to keep the same name of the file (or change it by typing any name)

Homogenization: there is only one type of homogenization – which is none!

Crystallite information:
[Essential] - name is just for your reference

Outputs of interest: texture, f (deformation gradient tensor), p (first Piola–
Kirchhoff stress), orientation and grain rotation

Isotropic material

Hookean elasticity
J2 plasticity (no hydrostatic stress effect)

Output – flow stress and strain rate

Stiffness tensor: C11 and C22 (isotropic)

tau0 – shear stress for slip on one plane, tausat
– saturation stress, atol_resistance is a

convergence parameter, and for other terms
here, refer to next page (note w0 = a)

This is the routine
(at /opt/…
location)

http://damask.mpie.de/Documentation/Isotropic

I

II

Instead of using “Isotropic material”
option in <phase>, as follows

One may also use the following for
describing material plasticity: a bit more

realistic choice:

<phase>
{/opt/DAMASK/code/config/Phase_Phen
opowerlaw_Aluminum.config}

This is the routine
(at /opt/… location)

To define load file – let’s use “nano” command to create a file called “tensionY.load”

1. * represents unconstrained BC
2. Strain rate in y direction is 10-3 s-1

3. Stress in x-direction must be zero (traction
free)

4. Load it for 100 seconds (i.e., up to 0.1 strain)
5. Total increments to finish is 200 (i.e. each

time step is of 0.5 seconds)
6. Save data with frequency of 5 – so total 40

sets of data will be saved

I

II

Do not write it with “new lines”

More than one loading
sequence can be applied by

writing “all loading
/boundary conditions

commands” in different lines
(first line is first set of

loading, etc.)

Run simulation
(DAMASK software, Spectral method)

Using these load
and geometry

Write solution in
this file

Run in
background

Job number at
“server” computer

Also important files

“cat” or “less” 40grains_tensionY.sta or *.sta file
(as its only one in there of this type – “*”
subsitutes for the probable file names in folder)

For this simple problem, it converges in 1
step itself (more on next slide)

I

II

III

“tail” 40grains_tensionY.out to check the progress

5th out of 200 steps

Next iteration value for the stress
tensor – and it actually converges

(i.e., satisfies atol_resistance
criterion) in one step itself

A
t

o
n
e

s
t
e
p

Simulation run finishes

“Ctrl + C” to finish “tail”

I

II

-- cr (crystallite outputs
check in .config file for

options) Write – f and p

Creates a folder postProc with text file containing “average of all
load steps” f and p results (no time resolution here)

II

I

Change directory (cd) to postProc
and then long list items in there

Working directory (pwd)

Txt file has all data in table with these “labels”

Add (Left Cauchy-Green) strain tensor in table from the
displacement gradient tensor

--left (left strain tensor), --logarithmic (true strain)

2-D tensors of f and p are written row-wise so axy is (2*(x-1)+y)_a

Add (calculate) Cauchy stress tensor from first Piola-Kirchhoff
stress tensor

Generate Mises strain using Left Cauchy-Green
Strain and Cauchy Stress Tensors and Add it to table

II

I

III

IV

showTable (shows table), showTable --abc
Shows a component of the table

Spectrally resolved data data at each time increment (unlike the average we got in the last slide)

Working directory should be “cd” to the directory where spectral
output file is located (.. Takes it one folder “up”)

“tab” can be used to fill the name of the
file once it becomes unique

Note: (i) need for defining increments and range of data – 200 is total
number of steps but we are interested in only the last step (200th), (ii) get it
by splitting the data set, (iii) identify each data point from its x,y,z
coordinates, and (iv) produce crystallite outputs of f, p, etc.

Following generation of a new text file in postProc folder (with a name ending with
_inc200.txt) (_inc200 here means the data achieved at 200th increment – i.e., the last step),
we again need to generate strain tensors, Cauchy stress tensor and the finally Mises strain
following the same procedure as described before and shown in next slide.

New file with “new” table

Old file remains there

II

I

Inverse pole figures with (001) pole in cubic system

Initial Geometry IPF after loading

Produces an image
with “RGB” colours

Take data from time
table under given lable

Dimension of
data is 64 x

64

Transfer it to your computer from server computer
for viewing

Initial Geometry

Von Mises strain after loading
(in isotropic material under unixial tension, von Mises

strain is constant/uniform – not so interesting!)

Produces an image Take data from time
table under given lable

Transfer it to your computer from server computer for viewing

Dimension of
data is 64 x

64

Note: No “--color
bluered” command
in “imageData”, so
plot is in greyscale

Make a new directory (in this case PK_02), go there and copy geometry, configuration,
visualization (vtu & vtr) and load files from praveenk/PK_01 to this directory

Copy (cp) this file from location PK01 which
is in one level up directory (../PK01)

Copy here in this directory (i.e., PK02)

Tutorial 2: Uniaxial tension type loading on a crystalline material (specific slip systems, etc.)

Editing “material.config” file to change the
materials model from “isotropic” to

“Phenomenological power law”

I

II

Hookean elasticity
Phenomenological power law (check next slide for details)

Output – resistance to slip along a slip system,
shear rate, resolve shear stress along a slip

system, total shear strain on a slip system, total
shear in material, and similar terms for twin

Stiffness tensor: C11, C22 and C44 (cubic)

tau0 – shear stress for slip on one plane, tausat –
saturation stress, atol_resistance is a convergence

parameter, and for other terms here, refer to next page
(note w0 = a)

Crystal structure
Number of primary slip systems
Number of twin systems (assumed 0 – i.e., no
twinning allowed)

?
?
?
?
?
?
?
?
?
?
? Relative intensity of 6 types of dislocation –

dislocation interactions in this sequence:
collinear, Lomer-Cottrell…????

Run simulation
(DAMASK software, Spectral method)

Using these load
and geometry Write solution in

this file
Run in

background
Job number at

“server” computer

Also important files

I

“tail” 40grains_tensionY.out to check the progress

10th out of 200 steps

Next iteration value for the stress
tensor – it may take a few more

steps

A
t

o
n
e

s
t
e
p

Simulation run finishes

“Ctrl + C” to finish “tail”

I

II

“less” 40grains_tensionY.sta

Check for an increase and then a decrease
and then finally a stable number of
iterations to converge to a solution

 Now, either we can “postProc” data at increment step (as we did in the last example) or write the following shell
program using “nano” with list of commands in same sequence as earlier, save it with some name (such as
do_postprocess.sh), and run all it in one go!

Creates a folder postProc with results in a text file
Results from this file

New line (otherwise the whole sequence of command has to be
written in one line without “line break”

Range up to 200 in increment of 40 (data: 0,40, 80, 120, 160 and 200)

These results After this step, we have 5 text files
(*_inc40.txt, *_inc80.txt, etc.) in postProc
folder with results at increments of 40

Go inside postProc folder where files are created

String variable “theFile”

Add strain tensors, Cauchy stress, Mises strain and IPF information in
the text file (name theFilexx – xxx is increment like 040, 080,…,200)
using usual calculations

Generate image with 64 x 64 pixels showing Mises strain within
range from 0 to 0.3 in green colour (invert ??) – File name:
40grains_tensionY_incxxx_Mises(ln(V)).png

Generate “red” image showing Cauchy stress
 File name: 40grains_tensionY_incxxx_Cauchy.png

Generate “greyscale” image showing Grain rotation
File name: 40grains_tensionY_incxxx_grainrotation.png

Generate RGB image showing IPF maps
File name: 40grains_tensionY_incxxx_IPF_001_cubic.png

Shell file with list of commands

Run (.) do_postprocess.sh file from this folder (note that it change directory to “postProc”

Check all text files (notice there names)
and corresponding stress, strain, etc.
files.

(One can do the same one by one also –
or just go in one go)

Transfer it to your computer from server computer
for viewing

All files are transferred in your
computer in designated folder

Mises
strain

Inc: 000 Inc: 080 Inc: 120 Inc: 160 Inc: 200 Inc: 040

Cauchy
stress

Grain
rotation

IPF
map

strain: 0 strain: 2 % strain: 4 % strain: 6 % strain: 8 % strain: 10 %

Copy the appropriate “.ang” file to the current directory (EBSD data can be exported to .ang file
using TSL-OIM software) – one can use WinSCP as usual

Geometry will be prepared using this file

Tutorial 3: Uniaxial compression type loading on a 2-phase alloy

Steps for creating geometry file from .ang file
1. Create .txt file from .ang by copying it in .txt format
2. Modify .txt file to add appropriate headers
3. Create geometry from table in the modified .txt file

Create .txt file from .ang by copying it in .txt
format

Commented
details of
entries

Table of data in following
sequence:
Euler angles 1, 2 and 3,
followed by x and y
coordinates of the point,
followed by some “useless
(incomprehensible)
information” followed by
phase information
(1 and 2 are beta-Ti and
alpha-Ti, respectively – as it
comes from EBSD data
itself!) followed by more
useless information

Delete all these
(comment information)
to convert the .txt file
containing a clean table
with Euler angles,
coordinates, etc. with
certain headers (^K or
cut command may
expedite deleting lines)

a,b, c and d are useless
information

Euler 1 X Euler 3 Euler 2 Y Phase

Show the labels (-l) of table
in the .txt file

Get help (-h) with the extensions (i.e.,
things after “-”)

So “showTable –d
will show data in the
table

Count (wc) the lines (-l) of data in the table (-d)

Only 58 x 39 (that’s the number of grid points – note it was 64 x 64 in previous two
examples) anyway, there are 59 x 39 in EBSD data, somehow one row is lost here!

Show the table data (use “showTable –d
filename.txt | less” command at the end
to read data page by page

Get help (-h or --help) with the extensions
(i.e., things after “-”)

????

First row data of Euler angles

Filter all Euler angles (?_euler) data from the
first row of the table (#_row_# == 1)
--? – what is the use of this step?

Get help (-h or --help) with the extensions
(i.e., things after “-”)

Coordinates are under “*_pos”,
phase is under phase and eulers is
under “*_euler” headings

Orientation of x, y and z of
geometru with that in
“EBSD” file

List of
symmetries

Tolerance in angle
(radians)

Creating geometry file from table data in .txt file while specifying
coordinates, Euler angles, phases, axes relationship between
geometry and the original EBSD/.ang file, crystal symmetries and
the tolerance in angle (Note: the sequence of “--“ commands so
not matter!)

Only 91 grains
No homogenization scheme as each
point is defined as a crystallite

Creating a materials.config file from the .geom file itself (note – earlier we created material.config file
using Voronoi Tessellation on the seed points; however, we do not need any tessellation here as geom file
already has all information about grain definition, etc.).

This does not include labels

Output comes as rows ??

Writes the bottom 548 (?) lines in material.config file
-- see the difference in .config and .geom file in next slide

All that is gone in .config file (as that is
not in bottom 548 lines!)

Same

Thus, other way of making “material.config” file is to copy
.geom file to material.config file, open the material.config

file (say using nano or even Notepad ++) and delete the
top non-essential stuffs this may be useful if it is

difficult to calculate 548 number (??)

Editing material.config file to include options for homogenization, output and phases

No homogenization

Crystal related outputs of phase information, displacement gradient, stress
tensor, orientation and grain orientation will be generated / calculated

Two phase (first appearing is first phase)
 BCC ferrite is used for beta-Ti (which is BCC) - phase 1
 Cp-Ti is used for alpha-Ti (which is HCP) – phase 2

To read top 10 lines – as a cross-check of
saving the changes in a file

Writing the load file (uniaxial compression at rate of 10-3 s-1)

1. * represents unconstrained BC
2. Strain rate in y direction is 10-3 s-1

3. Stress in x-direction must be zero (traction free)
4. Load it for 200 seconds (i.e., up to 0.2 strain)
5. Total increments to finish is 100 (i.e. each time step is of 2 seconds)
6. Save data with frequency of 5 – so total 20 sets of data will be saved

I

II

Same as “ll” (long–list)

Running DAMASK Simulation on more than 1 node ()

How many nodes are available
How many are used by DAMASK now
Run DAMASK on 4 nodes

Run simulation
Using these load

and geometry
Write solution in

this file
Run in

background
Job number at

“server” computer

Follow as the
simulation runs

(on 4 nodes, it will run
very fast)

Could not converge beyond
80 steps (i.e., slightly less

than 16 % strain)

Cut back exceeded ??

“less” the .sta file to check for steps required to
converge to a solution

Check – it almost explodes at the end (most
probably, a reduction in total strain or a
increase in total increments (say 0.5 second per
step instead of current 2 seconds per step) will
help it converge???

We can use the same old shell program to do post processing for us –
however, we need to modify it to suit this problem (look at range,
only two question marks in file name (i.e., ?? Instead of ???), and
assigning the proper name to IPF maps based on their phase
number.
 We can edit using “nano” in “putty” or text editor in “windows”

Windows –
editing using
Notepad ++

Transfer it to server using winSCP

I

II

III

Run (.) do_postprocess.sh file from this folder (note that it change directory to “postProc”

• Check all text files (notice there names) and corresponding stress,
strain, etc. files.

• Then transfer all these files from server to your computer using
winSCP or something like that

• Or, you can “stack” same type of .png files into a animation .gif
file (see next slide) – which then can be transferred to your
computer

Postprocessing run may take long…..

Makes a .gif (with 3 s delay
between frames) using .png files

Grain rotation IPF map Cauchy stress Mises strain

	Tutorials on DAMASK �Crystal Plasticity Software
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

